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Abstract-The onset of convection in a fluid layer in which the temperature profile is developing in time is 
considered with inclusion of random fluctuations when a constant heat flux is suddenly applied to the bottom 
surface. Using the expansion in terms of the eigenfunctions ofthe linear instability, the governing equations are 
reduced to a set of ordinary random differential equations, which are solved by a Monte Carlo simulation. The 
dependency of the onset time ofconvection on the Rayleigh number and the Prandtl number is investigated. 

Numerical results are in good agreement with available experimental data. 

1. INTRODUCTION 

WHEN AN initially quiescent fluid layer is heated from 
below (or cooled from above) with the corresponding 
Rayleigh number exceeding a critical value, the 
quiescent state breaks down and convection sets in. The 
instability of a fluid layer with time-dependent 
temperature profile has received considerable atten- 
tion. One of the most important problems for the 
stability of a fluid layer heated in a time-dependent 
manner is to find the time at which the convection is 
initiated. 

Lick [l] and Currie [2] analysed the stability of a 
fluid layer with the base temperature varying in time by 
adopting a quasi-steady model, in which the base state 
is frozen at each instant in time. Homsy [3] and Wankat 
and Homsy [4] determined a lower bound to the onset 
time by means of the energy method. In these methods 
the time appears only parametrically and the onset of 
convection is treated by modifying the stability analysis 
of the fluid layer with time-independent temperature 
profiles. Calculated onset times are, in general, 
considerably lower than experimental observations. 
Another approach for the determination of the onset 
time is to integrate directly the time-dependent 
equations (initial value techniques) [S-7]. In this 
method the onset time of convection is taken to be when 
the fastest growing disturbance has increased to a 
suitable factor of its initial magnitude. However, the 
result shows a marked sensitivity to initial data, and to 
fit experimental data values of the amplification factor 
ranging several orders are necessary [6]. Another 
theoretical weakness lies in the assumption that the 
disturbances are present only at the initial instant. 

Recently, onset of convection from random 
fluctuations has been investigated for stress-free 
boundaries subject to step and linear changes in surface 
temperature by Jhaveri and Homsy [S] and for rigid 
boundaries subject to various prescribed changes in 
surface temperature by the present authors [9]. The 
advantages of introducing random forcing are that it 

immediately specifies the status of initial values and 
that it takes into consideration continuous presence 
of noise during the evolution. 

Many investigations concerned with the experi- 
mental determination of the onset time have been 
reported in the literature [lO-151. Nielsen and 
Sabersky [14] carried out transient experiments in 
which the motion was driven by a constant heat flux at 
the lower surface. They examined the effects ofdifferent 
heating rates on the onset of convection, on the change 
of Rayleigh number with time and on the development 
of motion subsequent to the onset of instability. 

In this study we consider the onset of convection 
when an initially isothermal fluid layer confined by two 
rigid horizontal surfaces is heated with a constant heat 
flux at the lower surface while the upper surface is 
held at the initial temperature. Effects of random 
fluctuations on the determination of the onset time are 
included. Special attention is paid 
heating rates and fluid properties 
convection. 

to the effects of 
on the onset of 

2. ANALYSIS 

Consider an initially quiescent and isothermal 
Boussinesq fluid layer confined between two rigid 
plates which are infinitely extended in horizontal 
directions. At the instant f = 0, a constant heat flux Q is 
applied to the lower surface, while the upper surface 
temperature is maintained at the initial temperature T,. 

After introducing the following dimensionless 
variables 

xi = Zi/h, ui = i&h/K, t = $h2, 

P = @-pos9h*h~, T = (T- T,)WQ, 

the governing equations with inclusion of random 
fluctuations may be written in the dimensionless form 
as [16] : 
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NOMENCLATURE 

a dimensionless wavenumber 
a,(t), b,(t), c,(t), d,(t) amplitudes of the 

variables 
A,, B,,, C,, Ii, J!,,,, dimensionless 

coefficients 

AT temperature difference between the 
surfaces 

all, II, 0, w velocity components 
W(z, t) Fourier amplitude 
xi, x, y, z rectangular coordinates. 

4St) Wiener process 
D differentiation with respect to z 
f(z, t),fJt) random forcing term 

9 gravitational acceleration 
h fluid depth 
H dimensionless heat flux 

ImC) imaginary part of Q) 
k thermal conductivity 
L differential operator, Dz-a2 
NU Nusselt number, H/R 

P pressure 
Pr Prandtl number 

Q heat flux at lower surface 
R Rayleigh number based on AT, 

agATh3/Kv 

ReC) real part of e) 
s surface temperature shape factor, 

I 

fc 
AT(r)dt/AT(t,)t, 

0 

sij random stress tensor 
t time 
T temperature 

T, initial temperature 
T cond conductive temperature 

Greek symbols 

; 
thermal expansion coefficient 
Dirac delta function 

6 mn Kronecker delta 
& Pr a3t@ 
e intensity of random forcing 
O(z, t), O,(z, t) Fourier amplitudes 
K thermal diffusivity 

2” eigenvalue of c#J.(z) 

p viscosity 
V kinematic viscosity 

P density 

Z(r) 

density at the initial temperature 
eigenfunctions satisfying equations 
and (17). 

Subscripts 
C quantity at onset of convection 
SC quantity of stationary critical 

condition. 

Other symbols 
dimensional quantity 

0 ensemble average. 

(16) 

boundaries, the boundary conditions are 

ui = 0, 
aT 
- = - 1 at z = 0, ?_ 
OZ 

= -$+HT6i,+ 
I 

g& + 2, (2) 
I J J 

aT aT a2T 

ar+“‘-=--’ axj axjaxj 
(3) 

Here the coordinate x3( =z) is measured vertically 
upwards from the lower_ surface, H = agQh4/Kvk 
denotes the dimensionless heat flux at the lower surface 
and Pr = V/K the Prandtl number. si, is the Gaussian 
random stress tensor in thermodynamic fashion, 
statistical correlations of which are given as : 

<Sij> = O, 

(Sij(xp, t,h,(x,, f2)) = 2Pr e+, - x&W2 - td 

x (6i16jm + 6im6jl)* t4) 

In (3) we have neglected the random heat flux vector 
which is much smaller than the random stress tensor for 
most fluids 181. Neglecting the fluctuations at the 

ui = 0, T = 0 at z = 1. 
(5) 

At the initial stage it is expected that no convection 
will occur and that heat will be transferred only by 
conduction. The conductive temperature Kond(z, t) 
satisfies 

-=- for t 20, 0 <z < 1 
at a2 

(6) 

with the initial and boundary conditions 

aqond 

Tcond(z, t) = 0 for t < 0, 
(7) 

7 (0,t) = - 1, T,,,,(l,t) = 0 for 1 2 0. 

The solution of equation (6) satisfying (7) is 

m e-“:’ 
Tfond(Z,t) = l-z-2 c 7 cos P”Z, (8) 

n=l p. 

p,= n-r x. ( > 2 
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For the analysis of transient convection, following 
Jhaveri and Homsy [8], we assume that the first 
convective motion appears in a two-dimensional form, 
large-scale features of convective motion at onset are 
dominated by one horizontal mode and the mean-field 
approximation is applicable. Thus we restrict our 
analysis to two dimensions and retain only one mode 
in the horizontal structure when the variables are 
decomposed. In addition, the dimensionless number 0 
giving the variance of the random stress is assumed to 
be constant in time. 

With these assumptions, the Fourier decomposition 
of the dependent variables in the horizontal direction 
can be written as 

w(x, 2, t) = W(z, t) cos ax, (9) 

VT z, t) = Tcdk t) + @,(z, t) 

1 
+ a2H O(z, t) cos ax, W) 

with associated expansions for u and p. It is to be noted 
that the temperature field 0, independent ofx includes 
the modification of the mean temperature distribution 
by convection. Substituting these expansions in the 
governing equations and removing horizontal depen- 
dence by taking appropriate inner products, we obtain 
the following partial differential equations for the 
Fourier amplitudes W(z, t), O&z, t) and O(z, t) : 

p LW = Pr(JZW-O-f), (11) 

;a = LO-u2H(DT,,,,+D0,)W (12) 

&0,=D20,- (13) 

where D = a/&, L = D2 -a2 and the random 
forcing term f(z, t) is 

-($+$/)}sincxdx. (14) 

Boundary conditions (5) become 

W=DW=DO=DOo=O at z=O, 

W=DW=@=G&=O at z=l. 
(15) 

We seek the solution of (11)-(13) by expanding the 
variables in terms of eigenfunctions which satisfy 

C+,i-n,6+, = 0 for 0 < 2 < 1, (16) 

with boundary conditions 

4. = DC& = DL?& = at z = 0, 

4. = D& = L?& = 0 z = 1. 
(17) 

at 

The eigenfunctions defined by (16) and (17) are those 
of linear instability of stationary Rayleigh-Btnard 

convection with a rigid insulating lower boundary and 
a rigid conducting upper boundary [lfl. An explicit 
expression for the eigenfunction 4, is given in the 
Appendix. Normalized eigenfunctions satisfy the 
following orthogonality relation : 

s 

1 

&,.L?+, dz=6,,. (18) 
0 

The Fourier amplitudes W(a, t), O(z, t) and O,(z, t) are 
expanded in the following forms : 

@(z, 0 = f hw4,(z), (20) 
It=1 

O,(z, t) = 5 c,(t) cos n-i ( > 7u. (21) 
“=I 

Expressions (19)-(21) automatically satisfy boundary 
conditions (15). By substituting equations (19H21) and 
(8) into equations (11)-(13), taking appropriate inner 
products and using orthogonality relations (18), we 
obtain the following infinite set of coupled ordinary 
random differential equations : 

; ; %I = lt 4m@,-%+_tJ, (22) 
“=I 

; b, = f B,,(Ha,-H,b,,)+Hu, F I#-d,) , 
II=1 1=1 

(23) 

$ c, = -ik,,- ; 8 i J,",a,b,, (24) 
n 11-l 

where A,, is the mn-element of inverse of matrix (C,,) 
and 

I 

1 

f.(t) = f(z.W&)dz, 
0 

H, = 1,6/u2, 

B,=u2 
I 

’ Q,(+A(z) dz, 
0 

cm,= - 

s 

1 

W&M&)dz, 
0 

I!,,. = a2~l 
I 
' 4,(44.(4sin w dz, 
0 

Jz = 9 ~,,(z)L?&(z) sin p,,,z dz. 

(25) 

Explicit expressions of B,, C,, I!,,,, and Jf,,. are given in 
the Appendix. It is to be noted that H, takes its 
minimum value of the stationary critical Rayleigh 
number R,, (=1295.78) for a = 2.55 which is the 
stationary critical wave number uSc [ 171. The random 
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forcing termf,(t) is a Gaussian process with vanishing 
mean and its correlation is obtained by use of the 
relations (4), (14) and (18) : 

where 

<f,(t,)L(t,)) = wn,w, - h), (26) 

D,, = &,,,, E = Pr a%/a. (27) 

In order to obtain the solutions of the evolution 
equations (22H24), we need the initial conditions for 
a,(t), b,(t) and c,(t). We consider the initial state of 
the fluid layer as motionless and pseudo-thermal 
equilibrium at some average temperature [8]. The 
initial conditions for 6, and c, are b,,,(O) = c,(O) = 0, 
since the thermal fluctuations are negligible. On the 
other hand a,,,(O) is related to the statistics of random 
forcing, and is given by the steady-state solution of (22) 
withb,=O: 

Equation (28) is a linear Ito equation, and implies that 
a,(t) is also a Gaussian process with vanishing mean 
and its variance for steady state has the following form : 

(a,a,) = E Pr A,,,,,. 

In summary, initial conditions for (22)-(24) are given by 

<a,(O)> = 0, 

(%,(O)%(O)> = E Pr A,, 

b,(O) = c,(O) = 0. 

(29) 

3. SOLUTION 

The random evolution equations (22x24) are solved 
numerically by a Monte Carlo simulation. Each of the 
series a,,,, b, and c, has been truncated to a finite 
number of terms, as required for convergence. The 
number of terms retained depends on the parameters 
of the problem. Numerical calculations show that 
expressions (19H21) work more efficiently as the heat 
flux H decreases, and near the stationary critical 
Rayleigh number only two or three eigenfunctions are 
needed for the convergeace. 

For numerical calculations, it is convenient to 
represent the white component of f.(t) in (22) as 
dB,(t)/dt, where B,(t)is the Wiener or Brownianmotion 
process. The random increment of B,(t,)-B&J is 
Gaussian distributed with statistics [ 181: 

@A~,) - &M) = 09 
(30) 

<{B,(tz)-B,(tl))(B,(t,)-B,(t,))) = 2D,&z-tll. 

The random initial conditions and random 
increments of forcing terms are generated numerically 
under the condition that each of them is Gaussian 
distributed with a vanishing mean and its covariance 
satisfies relations (26) or (30). For this generation, we 
have used a polar method of pseudo-random-number 
generation [19]. For each time step, variables are first 

integrated deterministically using standard initial 
value techniques. Next, the randomly generated 
increments of forcing terms are added to complete the 
integration. 

One of the most widely used methods for the 
detection of the onset of thermal instability is to 
measure the heat transport across the fluid layer. At the 
onset of instability, the heat transport starts to depart 
from that due to conduction. To express the heat 
transport, it is convenient to introduce the following 
time-dependent Nusselt number [ 141: 

h aT 
Nu@) = - Aqg -& 

----(0,0,2) = -& (31) 

Here R is the time-dependent Rayleigh number based 
on the mean temperature difference between the lower 
and upper boundaries AT, 

R = agATh3/lcv = H-AT(t), 

AT(t) = kA?+(?)/Qh = T&O, t)+O,-JO, t). 
(32) 

Typical behaviours of time evolution of Nu and AT 
are shown in Fig. 1 for Pr = I, H = lo4 and a = 3.9. At 
the initial stage, immediately after the heat flux is 
applied to the lower surface, conduction is the sole 
mechanism ofheat transfer and, therefore, Nu decreases 
and AT increases monotonically with time for a given 
H. If the convective motion did not occur, both Nu and 
AT would have approached unity which is the value 
of the conductive steady state. As shown in Fig. 1, 
however, Nu attains a local minimum at a certain 
instant t, and approaches a constant value other than 
unity after showing transient behaviour. This may be 
explained by the occurrence of convection. We may 
define, therefore, the onset time as the ensemble average 
of the time at which Nu starts to grow for the first time. 
For the determination of the onset time, wavenumber 
dependency is removed by choosing the particular 
wavenumber for which Nu grows fastest. 

Although the onset time decreases with the increase 
of the value of 8, the onset time is rather insensitive to 
the variation of 8 as shown in Fig. 1. For numerical 
calculations, we have chosen 8 as 1O-6 which is some 
three orders of magnitude larger than the intensity of 
the thermodynamic fluctuations in typical fluids [13]. 

4. RESULTS 

The onset time depends on various parameters of the 
problem. In Fig. 2 the numerical results are shown in 
graphs of the onset time t, vs the dimensionless heat flux 
H for three typical Prandtl numbers 0.7, 7 and 45. 
Figure 2 also shows the experimental data of Nielsen 
and Sabersky [14] for Pr = 45. Results of numerical 
calculation are in good agreement with those of 
experimental observation. It is seen that the onset time 
increases rapidly as the heat flux H decreases and goes 
towards infinity when H approaches the limiting value 
R,, (= 1296). When H is lowered below R,,, the fluid 
layer is stable even in the time-dependent situation. For 
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Nu 

AT 

t 

FIG. 1. Behaviour of time-dependent Nusselt number Nu and temperature difference AT between the plates for 
H = 104, Pr = 7 and a = 3.9. 

very high heat flux, it is known that the depth of fluid 
should no longer have an influence on the onset time, 
because instability occurs before the effects of heating 
have penetrated the fluid layer to the full depth. In 
this case, the dimensional analysis shows that the 
dimensionless onset time should be inversely propor- 
tional to the square root of H [14]. The proportionality 
constant is a function of the Prandtl number : 

H’h, = F(B) as H + co. 

For Pr = 45, numerical calculation gives H”*t, N 20, 
while experimental data H”*t, 1: 19. Figure 2 shows 
that each of the shapes of the curves tends towards such 
a value. 

Figure 3 represents plots of the critical Rayleigh 
number R, vs the dimensionless heat flux H; as H 
increases, R, increases. Increase of Pr results in decrease 
of R, for given H. For low heat flux, R, approaches H 
independently of the Prandtl numbers. For very high 
heat flux R, should be proportional to H314 or inversely 
proportional to t, , 3/2 following arguments similar to 
those presented above. Each of these trends of the data 
in Fig. 3 indicates this kind of relationship. The values 
of analytically predicted critical Rayleigh numbers are 
20-30x larger than those observed, while theoretical 
values of onset times show good agreement with 
observations. A probable explanation for this 
difference is that in the analysis, the critical Rayleigh 

EXPERIMENTAL DATA OF 

NIELSEN AND SABERSKV I14 I 

loo FOR Pr=45 

1296 

16 I I , I 

lo3 loL lo5 lo” 10’ 10% 

FIG. 2. Onset time t, plotted as a function of dimensionless heat flux H. 

i 
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0 SABERSKY [I41 

FIG. 3. Critical Rayleigh number R, plotted against dimensionless heat flux H. 

number is defined with the temperature difference ATat 
the instant at which the temperature difference begins 
to deviate from that solely due to conduction, whereas 
in an experiment AT might have been measured at an 
instant shortly after the motion actually started. 
Because of the rapid variation of the temperature 
difference during a period after the onset time as shown 
in Fig. 1, a small time discrepancy can result in a 
significant decrease of the temperature difference or 
critical Rayleigh number. 

In Fig. 4 the critical Nusselt number Nu, is plotted 
against the critical Rayleigh number R,. It is seen that 
Nu, increases as R, or Pr increases. For low heat flux 
Nu, decreases towards unity as R, decreases. For very 
high heat flux Nu, becomes proportional to R,“3. As 
indicated in Fig. 4, each of the curves approaches the 
slope as expected. The transient critical wave number a, 
at which Nu grows fastest increases with the heat flux H. 

H 

For low heat flux, a, approaches the stationary critical 
wavenumber sac (= 2.55). While for high heat flux, a, 
should be proportional to H1/4. This tendency can be 
confirmed (Fig. 5). 

Taken together, Figs. 2-5 indicate that as the heat 
flux is increased for a fixed Prandtl number, the onset 
time decreases while the critical Rayleigh number, the 
critical Nusselt number and the critical wavenumber 
increase ; as the Prandtl number is increased for a fixed 
heat flux, the onset time and the critical Rayleigh 
number decrease while the critical Nusselt number 
increases. These trends are in agreement with both 
theoretical predictions using frozen time analysis by 
Currie [2] and experimental data of Nielsen and 
Sabersky [ 141. However, values of the onset times in the 
present analysis agree well with those observed not only 
qualitatively but also quantitatively, while Currie’s 
values are significantly shorter than those observed. 

X0.. 

EXPERIMENTAL DATA OF 

NIELSEN AND SABERSKYI 14 1 
FOR Pr ~45 

1296 

lo”- 1 
I I 

103 104 105 lo6 Rc 

FIG. 4. Critical time-dependent Nusselt number Nu, plotted against critical Rayleigh number R,. 
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a;o22 

‘n__l 
SC 

II 
10' 10' lo6 ld 10' 

FIG. 5. Critical wave number a, plotted against heat flux H for Pr = 0.7. 

H 

5. SUMMARY AND DISCUSSIONS 2. I. G. Curie, The effect of heating rate on the stability of 

The onset of convection in a fluid layer bounded by 
stationary fluids, J. Fluid Mech. 29,337-347 (1967). 

3. G. M. Homsv. Global stability of time-demndent flows : 
rigid surfaces and subject to a time-dependent profile 
by a constant heat flux from below has been considered 
with the inclusion of random fluctuations. The 
dependency of the onset time (defined as the ensemble 
mean of the time at which the bottom-surface 
temperature starts to decrease for the first time) on the 
heat flux was established. The results show that the 
onset time decreases as the Prandtl number, the heat 
flux or the Rayleigh number increases ; the results agree 
quantitatively with the experimental data. 

For very high heat flux, R,t:” approaches an 
asymptote, which is a function of the Prandtl number. 
This asymptote is about 2450 for Pr = 0.7,740 for Pr 

= 7 and 460 for Pr = 45, respectively. Compared with 
the experimental results of Davenport and King [ 153 or 
the numerical results of the present authors [9], this 
asymptote for a fixed Prandtl number is higher than 
that for the case of step change but lower than that for 
the case of linear change in surface temperature. The 
onset time depends, in general, on the method of time- 
dependent heating or boundary conditions as well as 
the heating rate. A simple factor indicating the method 
of heating is the shape factor s defined as [ 151 

S= AT(t) dt/AT(t,). t,. 

By this definition, s = 1 for the step change and s = l/2 
for the linear change in surface temperature, while for 
fixed heat flux s falls in the range 0.5 < s < 1. The 
results obtained in this work are in agreement with the 
fact that the asymptote for high heating rate decreases 
with increase in s [9, 151. 
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APPENDIX 

The orthonormal eigenfunction satisfying equations (16) 
(18) can be written as: 

4.(s) = i ; d.P%rLb(sX (Al) 
p=i r=i 

where 

anI = (I,’ -a’)“‘, 

a,, = {(I: + L,Za* + Q”/2 -(A,2 +a’/2)/2}“’ 

+i{@: + 1,2a2 + ~‘)“~/2 +(A.2 +a*/2)/2}‘/*, 

a,, = a$, 

c, = 1, c2 = c, cs = c*, c = exp(-2ia/3), 

II:, = + an, tan (c,,/2), 

NIL = -a,, cot (a,,/2), 

5: = CB:, - Re MJIP Im h3. 

1 
v:, = 1, v& = - 2 +it;, vi, = vg, 

Using Newton’smethod with above relation as an initial value 
for &, we can easily calculate the accurate eigenvalue 1,. 
Differentiating (Al), LI$, and L?+, are written as 

I&(z) = -X i ; d:cX,%(z) 
p=1 r=r 

E&(z) = +A,’ i ; d.pc,v;$:,(z). 
p=, r=1 

Making use of these results, B,,, C,,, IL and Jh are obtained 
after straightforward calculations : 

B,, = a2 i ; (d9%%, ifm=n 
p=i r=1 

-([&-$)Im(c/I:z)}, if m # n 

-4J5 Im(y$Ii,) 1 , if m = n 

where 

Y 
and the eigenvalue I,, is determined to satisfy the following 
equation : 

jl ,tl & Im(c3w = 0. 

For a fixed wavenumber, the asymptotic behaviour of 
eigenvalue 1” for large n is given by 

APPARITION DE CONVECTION NATURELLE DANS UNE COUCHE DE FLUIDE 
BRUSQUEMENT CHAUFFEE PAR DESSOUS 

Resume-L’apparition de convection dans une couche de fluide, dans laquelle le profil de temperature varie 
dans le temps, est consider&e avec inclusion de fluctuations desordonnbs lorsqu’un flux thermique constant 
est brusquement applique a la surface inbrieure. Utilisant un ddveloppement en fonctions propres de 
l’instabilite lineaire, les equations sont r&duites en un systemme d’tquations dibrentielles qui sont resolues par 
un simulation Monte Carlo. On ttudie la dbpendance du temps d’apparition de la convection vis-a-vis du 
nombre de Rayleigh et du nombre de Prandtl. Les resultats numbriques sont en bon accord avec les don&es 

experimentales disponibles. 
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EINSETZEN DER NATURLICHEN KONVEKTION IN EINER FLUIDSCHICHT BE1 
PLGTZLICHER ERWARMUNG VON UNTEN 

Zuaammenfasaung-Es wird das Einsetzen der Konvektion in einer Fluidschicht bei zeitlicher Veriinderung 
des Temperaturprofils unter Bertlcksichtigung von zufdligen Schwankungen betrachtet, wenn pliitzlich ein 
konstanter Warmestrom an der Bodenlliiche aufgebracht wird. Die geltenden Gleichungen werden mit Hilfe 
der Eigenfunktionen der linearen Instabilitlt auf einen Satz von normalen Zufallsdifferentialgleichungen 
zuriickgeftihrt, welcher mit Hilfe einer Monte-Carlo-Simulation geliist wird. Die Abhiingigkeit des 
Zeitpunktes des Einsetzens der Konvektion von der Rayleigh-Zahl und der Prandtl-Zahl wird untersucht. Die 

numerischen Eegebnisse stimmen gut mit den verfiigbaren experimentellen Daten iiberein. 

B03HHKHOBEHWE ECTECTBEHHOH KOHBEKHHA B CJIOE TAQKOCTM B 
YCJIOBMJIX Ml-HOBEHHOI-0 HAFPEBA CHI43Y 

A-T-S--PaCCMaTpaBaeTCK B03HHKHOBeHHe KOHBCKUHH B CJIOe WiJJKOCTU, B KOTOpOM TeMnepaTyp- 

HbIii I'IpO@Ib pa3BHBaeTCK BO BpeMeHH C ygeTOM CJIy%diHbIX &IyKTyaUHii,KOrna IIOCTORHHbIM TenJIO- 

BRIM noToKoM BHe3anHo HawHaeT pa3orpeBaTbcn HHPHKK IlOBepXHOCTb. npU UCnOJlb30BaHAB 

pa3noxeHmnoc06cTBeHHbIM QYHKUHIIM ~n~HeiiHoii3anaYeyc~0iiWB0cT~onpenennI0WieypaBHeHkiK 
CBOLUlTCl K CHCTeMe 06bIKHOBeHHbIX &"$e~HWIaJlbHbIX ypaBHeHH& KOTOpbIe ~WFUOTCK MeTOilOM 

Motire-Kapno. kICCJIenyeTCJI 3aBHCHMOCTb BpeMeHH B03HHKHOBeHHK KOHBeKWR OT YUCeJI P3JIeK W 

npaHATJT% %iCJIeHHbIe w3yJIbTaTbI XOpOluO COrJIaCyiOTCK C HMeIOWiMBCII 3KCnepWMeHTaJIbHbIMB 

AaHHbIMU. 

ntr 29:2-c 


