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Abstract—The onset of convection in a fluid layer in which the temperature profile is developing in time is

considered with inclusion of random fluctuations when a constant heat flux is suddenly applied to the bottom

surface. Using the expansion in terms of the eigenfunctions of the linear instability, the governing equations are

reduced to a set of ordinary random differential equations, which are solved by a Monte Carlo simulation. The

dependency of the onset time of convection on the Rayleigh number and the Prandtl number is investigated.
Numerical results are in good agreement with available experimental data.

1. INTRODUCTION

WHEN AN initially quiescent fluid layer is heated from
below (or cooled from above) with the corresponding
Rayleigh number exceeding a critical value, the
quiescent state breaks down and convection sets in. The
instability of a fluid layer with time-dependent
temperature profile has received considerable atten-
tion. One of the most important problems for the
stability of a fluid layer heated in a time-dependent
manner is to find the time at which the convection is
initiated.

Lick [1] and Currie [2] analysed the stability of a
fluid layer with the base temperature varying in time by
adopting a quasi-steady model, in which the base state
isfrozenateachinstantin time. Homsy [3] and Wankat
and Homsy [4] determined a lower bound to the onset
time by means of the energy method. In these methods
the time appears only parametrically and the onset of
convection is treated by modifying the stability analysis
of the fluid layer with time-independent temperature
profiles. Calculated onset times are, in general,
considerably lower than experimental observations.
Another approach for the determination of the onset
time is to integrate directly the time-dependent
equations (initial value techniques) [5-7]. In this
method the onset time of convection is taken to be when
the fastest growing disturbance has increased to a
suitable factor of its initial magnitude. However, the
result shows a marked sensitivity to initial data, and to
fit experimental data values of the amplification factor
ranging several orders are necessary [6]. Another
theoretical weakness lies in the assumption that the
disturbances are present only at the initial instant.

Recently, onset of convection from random
fluctuations has been investigated for stress-free
boundaries subject to step and linear changes in surface
temperature by Jhaveri and Homsy [8] and for rigid
boundaries subject to various prescribed changes in
surface temperature by the present authors [9]. The
advantages of introducing random forcing are that it

immediately specifies the status of initial values and
that it takes into consideration continuous presence
of noise during the evolution.

Many investigations concerned with the experi-
mental determination of the onset time have been
reported in the literature [10~15]. Nielsen and
Sabersky [14] carried out transient experiments in
which the motion was driven by a constant heat flux at
the fower surface. They examined the effects of different
heating rates on the onset of convection, on the change
of Rayleigh number with time and on the development
of motion subsequent to the onset of instability.

In this study we consider the onset of convection
when an initially isothermal fluid layer confined by two
rigid horizontal surfaces is heated with a constant heat
flux at the lower surface while the upper surface is
held at the initial temperature. Effects of random
fluctuations on the determination of the onset time are
included. Special attention is paid to the effects of
heating rates and fluid properties on the onset of
convection.

2. ANALYSIS

Consider an initially quiescent and isothermal
Boussinesq fluid layer confined between two rigid
plates which are infinitely extended in horizontal
directions. At theinstant f = 0,a constant heat flux Q is
applied to the lower surface, while the upper surface
temperature is maintained at the initial temperature T;,.

After introducing the following dimensionless
variables

x;=%;/h, u;=dh/x, t=1k/h?
p = (F—pogdh*/pc, T = (T—Tyk/hQ,

the governing equations with inclusion of random
fluctuations may be written in the dimensionless form
as [16]:
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NOMENCLATURE
a dimensionless wavenumber AT temperature difference between the
an(t), b(t), cult), dnt) amplitudes of the surfaces
variables u, u,v,w velocity components
Apins Brs Cams Ty oy limensionless W(z,t) Fourier amplitude
coefﬁcwnts X, X,y,2 rectangular coordinates.
B,(t)  Wiener process
D differentiation with respect to z Greek symbols . .
f(z 1), ft) random forcing term o th'ermal expansion coefficient
g gravitational acceleration d Dirac delta function
h fluid depth - Kronecker delta
H dimensionless heat flux & Pr a30/ T .
Im() imaginary part of (* ] intensity of rfindom ff)rcmg
k thermal conductivity O(z,1),04(z,1) Fc?urlc?r .amphtudes
L differential operator, D*-a? K thermal diffusivity
Nu Nusselt number, H/R A el.genv'alue of ¢,(2)
P pressure K viscosity
Pr Prandtl number v kinematic viscosity
0) heat flux at lower surface P density .
R Rayleigh number based on AT, Po d.ens1ty at 'the 1n1t1?1 temperature
agATh? /iy ¢.(z)  eigenfunctions satisfying equations (16)
Re() real part of (9 and (17).
s surface temperature shape factor, Subscripts
J AT()dt/AT(t ), c quantity at onset of convection
sC quantity of stationary critical
ij random stress tensor condition.
t time
T temperature Other symbols
Ty initial temperature dimensional quantity
T..na  conductive temperature <D ensemble average.

1 6ui +u 6u;
Pr\ ot 4 0x;

op %u; 0s;
- - L\ nTs, %y
ax HHTOat 54 )
0T oT  &T
o= 3
ar "5k, ox;ox, @

Here the coordinate x,(=z) is measured vertically
upwards from the lower surface, H = agQh*/xvk
denotes the dimensionless heat flux at the lower surface
and Pr = v/x the Prandtl number. s;; is the Gaussian
random stress tensor in thermodynamic fashion,
statistical correlations of which are given as:

{sy) = 0,
<Sij(xpa tl)slm(xq’ t2)> =2Pr oé(xp - xq)é(tz - tl)
X (00 jm+ Oimby)-  (4)
In (3) we have neglected the random heat flux vector

which is much smaller than the random stress tensor for
most fluids [8]. Neglecting the fluctuations at the

boundaries, the boundary conditions are

oT

=0, —=—1atz=0,
u; = z

&)
=0, T=0atz=1
At the initial stage it is expected that no convection
will occur and that heat will be transferred only by
conduction. The conductive temperature T,,.4(2,¢)
satisfies

oT, T,
axd 6;"““ for t20, 0<z<1 (6)
with the initial and boundary conditions
Toona(z,8) =0 for t<0,
o e ™
a“"" 0,)=—1, Toal,)=0 for t=0.
The solution of equation (6) satisfying (7) is
@ —u,.t
T;:ond(z9 =1 —z—2 Z COs u,z, 8)
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For the analysis of transient convection, following
Jhaveri and Homsy [8], we assume that the first
convective motion appears in a two-dimensional form,
large-scale features of convective motion at onset are
dominated by one horizontal mode and the mean-field
approximation is applicable. Thus we restrict our
analysis to two dimensions and retain only one mode
in the horizontal structure when the variables are
decomposed. In addition, the dimensionless number 6
giving the variance of the random stress is assumed to
be constant in time.

With these assumptions, the Fourier decomposition
of the dependent variables in the horizontal direction
can be written as

w(x,z,t) = W(z,t)cos ax, )
T(x’ 2, t) = Tcond(z9 t) + @0(2, t)

+ tﬁ% O(z,1) cos ax, (10)
with associated expansions for u and p. It is to be noted
that the temperature field ®, independent of x includes
the modification of the mean temperature distribution
by convection. Substituting these expansions in the
governing equations and removing horizontal depen-
dence by taking appropriate inner products, we obtain
the following partial differential equations for the
Fourier amplitudes W(z, 1), O(z, t) and O(z,1):

d
5 LW = PrHI2W—0©—~f), (11)
d
p O = LO—-a*H(DT, g +DO)YW  (12)
90, = D@, D(W®) (13)
a ° ° 2a?H ’

where D =4/0z, L=D?—qa?> and the random
forcing term f(z, t) is

aZ 2nja astx azsn
fen= ?_L {(6x62 = )

2 2
_<6 Sux d s")} sinax dx. (14)

ox?  dzéx

Boundary conditions (5) become
W=DW=D@=DB;=0 at z=0,
W=DW=0=0,=0

We seek the solution of (11){13) by expanding the
variables in terms of eigenfunctions which satisfy

15
at z=1. (13

B¢, +A¢, =0 for 0<z<], (16)
with boundary conditions
,=D¢, =D, = at z=0,
¢ a”n
¢,=D¢,=Fp,=0 at z=1

The eigenfunctions defined by (16) and (17) are those
of linear instability of stationary Rayleigh~Bénard
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convection with a rigid insulating lower boundary and
a rigid conducting upper boundary [17]. An explicit
expression for the eigenfunction ¢, is given in the
Appendix. Normalized eigenfunctions satisfy the
following orthogonality relation:

1

J Om* Ly dz =6y (18)

[}
The Fourier amplitudes W{a, t), ©(z, t) and Oz, t) are
expanded in the following forms:

o

Wizt =Y a,)d.2),

n=1

(19)

OG0 = Y byl

n=1

Ofz,t) = i c,(t) cos <n-— %)nz 2D

n=1

(20)

Expressions (19)-(21) automatically satisfy boundary
conditions (15). By substituting equations (19}+21) and
(8) into equations (11){13), taking appropriate inner
products and using orthogonality relations (18), we
obtain the following infinite set of coupled ordinary
random differential equations:

1 d <
;’—r— d—t' a, = R Am,,(bn_an +j;|)9 (22)
—bn= 3 {Bm(Han—H,b"H Ha, 3 I‘m(q—d:)},
dt n=1 i=1
(23
d 1 & @
acm = —ﬂ,zncm— ﬁ Z z J:;anbls (24)

n=11=1

where A,,, is the mn-clement of inverse of matrix (C,,,)
and

1
Sty = '[ f(z.0)¢,(2)dz,

o
H, = 25/a?,
dy(e) = 2e~H/p2,

B,, =a’ J 01 Dm(2)n(2) dz, (25)

1
Cmn = _J L¢m(z)¢n(z) dZ,
]
Ifnn = 02#1 Jl ¢m(z)¢n(z) sin iz dZ,
0

n=tg j  $DEG@sin 2 dz

Explicit expressions of B,,,, C s, It and J.,, are givenin
the Appendix. It is to be noted that H, takes its
minimum value of the stationary critical Rayleigh
number R,, (=1295.78) for a = 2.55 which is the
stationary critical wave number a,, [17]. The random
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forcing term f,(t) is a Gaussian process with vanishing
mean and its correlation is obtained by use of the
relations (4), (14) and (18):

ImE)fult2))> = 2Dpnb(t; — 1), (26)

where

Dpyp = 80w &= Pra*/n. 27

In order to obtain the solutions of the evolution
equations (22)24), we need the initial conditions for
a,(t), b,(t) and c,(t). We consider the initial state of
the fluid layer as motionless and pseudo-thermal
equilibrium at some average temperature [8]. The
initial conditions for b,, and c,, are b, (0) = ¢,(0) = 0,
since the thermal fluctuations are negligible. On the
other hand q,,(0) is related to the statistics of random
forcing, and is given by the steady-state solution of (22)
with b,, = 0:

1 d ad

= Amn( —a, +f;|)~ (28)
1

Prac = &

Equation (28) is a linear Ito equation, and implies that
a,(t) is also a Gaussian process with vanishing mean
and its variance for steady state has the following form:

{ana,> =¢ePrA,,.
In summary, initial conditions for (22)}24) are given by
a,(0)y =0,
an(0)a,(0))> = & Pr Ay,
b,,(0) =c,(0) =0.
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3. SOLUTION

The random evolution equations (22)-(24) are solved
numerically by a Monte Carlo simulation. Each of the
series a,, b, and c, has been truncated to a finite
number of terms, as required for convergence. The
number of terms retained depends on the parameters
of the problem. Numerical calculations show that
expressions (19)21) work more efficiently as the heat
flux H decreases, and near the stationary critical
Rayleigh number only two or three eigenfunctions are
needed for the convergence.

For numerical calculations, it is convenient to
represent the white component of f,(f) in (22) as
dB,(t)/dt, where B,(t)is the Wiener or Brownianmotion
process. The random increment of B,(t;)— B,(t;) is
Gaussian distributed with statistics [18]:

{By(t2) = B,(t1)> = 0, 30)
<{Bm(t2)—Bm(tl)}{Bn(tZ)_Bn(tl)}> = 2Dmn|t2_t1"

The random initial conditions and random
increments of forcing terms are generated numerically
under the condition that each of them is Gaussian
distributed with a vanishing mean and its covariance
satisfies relations (26) or (30). For this generation, we
have used a polar method of pseudo-random-number
generation [19]. For each time step, variables are first
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integrated deterministically using standard initial
value techniques. Next, the randomly generated
increments of forcing terms are added to complete the
integration.

One of the most widely used methods for the
detection of the onset of thermal instability is to
measure the heat transport across the fluid layer. At the
onset of instability, the heat transport starts to depart
from that due to conduction. To express the heat
transport, it is convenient to introduce the following
time-dependent Nusselt number [14]:

oT H
Nu(t) = — m-g (0,0,1) = RO (31)

Here R is the time-dependent Rayleigh number based
on the mean temperature difference between the lower
and upper boundaries AT,

R = agATh kv = H-AT(t),
AT(t) = kAT(E)/Qh = T,04(0, 1) +O0(0, ).

Typical behaviours of time evolution of Nu and AT
areshownin Fig. 1 for Pr = 7,H = 10*and a = 3.9. At
the initial stage, immediately after the heat flux is
applied to the lower surface, conduction is the sole
mechanism of heat transfer and, therefore, Nu decreases
and AT increases monotonically with time for a given
H. If the convective motion did not occur, both Nu and
AT would have approached unity which is the value
of the conductive steady state. As shown in Fig. 1,
however, Nu attains a local minimum at a certain
instant ¢, and approaches a constant value other than
unity after showing transient behaviour. This may be
explained by the occurrence of convection. We may
define, therefore, the onset time as the ensemble average
of the time at which Nu starts to grow for the first time.
For the determination of the onset time, wavenumber
dependency is removed by choosing the particular
wavenumber for which Nu grows fastest.

Although the onset time decreases with the increase
of the value of 0, the onset time is rather insensitive to
the variation of 6 as shown in Fig. 1. For numerical
calculations, we have chosen 6 as 10~ % which is some
three orders of magnitude larger than the intensity of
the thermodynamic fluctuations in typical fluids [13].

32)

4. RESULTS

The onset time depends on various parameters of the
problem. In Fig. 2 the numerical results are shown in
graphs of the onset time ¢, vs the dimensionless heat flux
H for three typical Prandtl numbers 0.7, 7 and 45.
Figure 2 also shows the experimental data of Nielsen
and Sabersky [14] for Pr = 45. Results of numerical
calculation are in good agreement with those of
experimental observation. It is seen that the onset time
increases rapidly as the heat flux H decreases and goes
towards infinity when H approaches the limiting value
R,. (=1296). When H is lowered below R,., the fluid
layer is stable even in the time-dependent situation. For
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FIG. 1. Behaviour of time-dependent Nusselt number Nu and temperature difference AT between the plates for
H=10%Pr=7anda=39.

very high heat flux, it is known that the depth of fluid
should no longer have an influence on the onset time,
because instability occurs before the effects of heating
have penetrated the fluid layer to the full depth. In
this case, the dimensional analysis shows that the
dimensionless onset time should be inversely propor-
tional to the square root of H [ 14]. The proportionality
constant is a function of the Prandtl number :

H2t, = F(Pr) as H- .

For Pr = 45, numerical calculation gives H'/?t, ~ 20,
while experimental data H'/%t_ ~ 19. Figure 2 shows
that each of the shapes of the curves tends towards such
a value.

Figure 3 represents plots of the critical Rayleigh
number R, vs the dimensionless heat flux H; as H
increases, R, increases. Increase of Prresultsin decrease
of R, for given H. For low heat flux, R, approaches H
independently of the Prandtl numbers. For very high
heat flux R_should be proportional to H* or inversely
proportional to t3/2, following arguments similar to
those presented above. Each of these trends of the data
in Fig. 3 indicates this kind of relationship. The values
of analytically predicted critical Rayleigh numbers are
20-307% larger than those observed, while theoretical
values of onset times show good agreement with
observations. A probable explanation for this
difference is that in the analysis, the critical Rayleigh

Tcm'. :
| X4+ 0
: EXPERIMENTAL DATA OF
I NIELSEN AND SABERSKY(14]
1oo_i FOR Pr=45
1296
107
10°F
10_ 1 I L I L
10° 10" 10° 10* 10’ 10* H

F1G. 2. Onset time ¢, plotted as a function of dimensionless heat flux H.
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FIG. 3. Critical Rayleigh number R, plotted against dimensionless heat flux H.

number is defined with the temperature difference AT at
the instant at which the temperature difference begins
to deviate from that solely due to conduction, whereas
in an experiment AT might have been measured at an
instant shortly after the motion actually started.
Because of the rapid variation of the temperature
difference during a period after the onset time as shown
in Fig. 1, a small time discrepancy can result in a
significant decrease of the temperature difference or
critical Rayleigh number.

In Fig. 4 the critical Nusselt number Nu, is plotted
against the critical Rayleigh number R.. It is seen that
Nu, increases as R, or Pr increases. For low heat flux
Nu, decreases towards unity as R, decreases. For very
high heat flux Nu, becomes proportional to R}>. As
indicated in Fig. 4, each of the curves approaches the
slope as expected. The transient critical wave number a,
at which Nu grows fastest increases with the heat flux H.

For low heat flux, a, approaches the stationary critical
wavenumber q,, (=2.55). While for high heat flux, a,
should be proportional to H'/*. This tendency can be
confirmed (Fig. 5).

Taken together, Figs. 2-5 indicate that as the heat
flux is increased for a fixed Prandtl number, the onset
time decreases while the critical Rayleigh number, the
critical Nusselt number and the critical wavenumber
increase ; as the Prandt] number is increased for a fixed
heat flux, the onset time and the critical Rayleigh
number decrease while the critical Nusselt number
increases. These trends are in agreement with both
theoretical predictions using frozen time analysis by
Currie [2] and experimental data of Nielsen and
Sabersky[14]. However, values of the onset times in the
present analysis agree well with those observed not only
qualitatively but also quantitatively, while Currie’s
values are significantly shorter than those observed.

Ny
o,
10
X0 en
EXPERIMENTAL DATA OF
NIELSEN AND SABERSKY{14]
FOR Pr=45
il
101
0
10F

10

10°

10° 10° Re

FIG. 4. Critical time-dependent Nusselt number Nu, plotted against critical Rayleigh number R..
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5. SUMMARY AND DISCUSSIONS

The onset of convection in a fluid layer bounded by
rigid surfaces and subject to a time-dependent profile
by a constant heat flux from below has been considered
with the inclusion of random fluctuations. The
dependency of the onset time (defined as the ensemble
mean of the time at which the bottom-surface
temperature starts to decrease for the first time) on the
heat flux was established. The results show that the
onset time decreases as the Prandtl number, the heat
flux or the Rayleigh number increases ; the results agree
quantitatively with the experimental data.

For very high heat flux, R > approaches an
asymptote, which is a function of the Prandtl number.
This asymptote is about 2450 for Pr = 0.7, 740 for Pr
= 7 and 460 for Pr = 45, respectively. Compared with
the experimental results of Davenport and King[15] or
the numerical results of the present authors [9], this
asymptote for a fixed Prandtl number is higher than
that for the case of step change but lower than that for
the case of linear change in surface temperature. The
onset time depends, in general, on the method of time-
dependent heating or boundary conditions as well as
the heating rate. A simple factor indicating the method
of heating is the shape factor s defined as [15]

s= _[ * AT di/AT() 1,
0

By this definition, s = 1 for the step changeand s = 1/2
for the linear change in surface temperature, while for
fixed heat flux s falls in the range 0.5 < s < 1. The
results obtained in this work are in agreement with the
fact that the asymptote for high heating rate decreases
with increase in s [9, 15].
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APPENDIX

The orthonormal eigenfunction satisfying equations (16)-
(18) can be written as:

X 2 diviiG)

p=1r=1

bul2) = (A1)

where

ll/:,(z) = cos {anr(z - %)}/COS (anr/z)y
I//fr(z) = sin {(Zn'(Z— %)}/Sln (anr/z)’

= (A —a®)'?,
e = {4+ A2a® +a%1? 2 — (A2 +a2/2)/2} 12
+i{(Af+ A2a* +aY V22 + (A2 + a%/2)/2}1/2,
Opy = 0t
¢y =1, ¢; =¢, ¢3=c* c¢=exp(—2in/3),
Mar = + 0ty 1an (@,/2),
Maw = — Oy COL (2, /2),

%= LB, —Re(ni))/21m(n}),

vP

P 1 1EP. P P
m = 1’ Vn, = _§+1§n> Vny = Vnp»

= vp {anr + 2nr‘:r + ("nr)z}/za

P
nr — vnrnnn

2 3 ',y" —-1/2
o= [El P A,‘}(é£+\/§/2)2] ’
i =(- 1)"_'9n/<f£+ ﬁ)

2

and the eigenvalue 4, is determined to satisfy the following
equation :

2 3

1
XX
p=1r=1 §£+\/§/2
For a fixed wavenumber, the asymptotic behaviour of
eigenvalue A, for large n is given by

1\2 2
Ay ~<a?+ "+§ nz} as n-— oo.

Im(cyB5) = 0.

Using Newton’s method with above relation as an initial value
for A,, we can easily calculate the accurate eigenvalue 4,.
Differentiating (A1), L, and I?¢, are written as

2 3
—h XX dEcrViun(2)

p=1r=1

3 3
+A Y Y dicViyh).

p=1r=1

Lo, (z) =

B¢, =

Making use of these results, B,,,, C,.., I, and J.,, are obtained
after straightforward calculations:

2 Z Z (dp)zvnrynr’ lf m=n

p=1r=1
21232 2
T e G
p=1
—(é;—?)lm(cﬂi,}, if m o n

Con = i [{llz(d")2 z C*V..,v...}

p=1 r=1

3Im(y% ,‘,’2):|, ifm=n
222 2T, V3.,
-t 3 [{(a- e
S o G
RN

3
IL,=a*}%
r=1s=1
A4 3 3
1 _ n
Jmn =7 Z Z €O mnirs>
a ,=1s=1
where
_ Y
Comnirs =

7t — 2y o, + o) + (o, — o)

X (= DH{? — s+ 00 bins + 1N bt + Mie M,
+ (92 — s+ 0 Wt + M tatlns + M)}

+ {7 — oy — )ty — )ty — Hine)

= 2ttt lme =t e (astns — Hnsins)} 1o

1
v= <t— 5)1:, o = iV

APPARITION DE CONVECTION NATURELLE DANS UNE COUCHE DE FLUIDE
BRUSQUEMENT CHAUFFEE PAR DESSOUS

Résumé— L’apparition de convection dans une couche de fluide, dans laquelle le profil de température varie

dans le temps, est considérée avec inclusion de fluctuations désordonnées lorsqu’un flux thermique constant

est brusquement appliqué a la surface inférieure. Utilisant un développement en fonctions propres de

Pinstabilité linéaire, les équations sont réduites en un systéme d’équations différentielles qui sont résolues par

un simulation Monte Carlo. On étudie la dépendance du temps d’apparition de la convection vis-a-vis du

nombre de Rayleigh et du nombre de Prandtl. Les résultats numériques sont en bon accord avec les données
expérimentales disponibles.
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EINSETZEN DER NATURLICHEN KONVEKTION IN EINER FLUIDSCHICHT BEI
PLOTZLICHER ERWARMUNG VON UNTEN

Zusammenfassung—Es wird das Einsetzen der Konvektion in einer Fluidschicht bei zeitlicher Veréinderung
des Temperaturprofils unter Beriicksichtigung von zufilligen Schwankungen betrachtet, wenn plétzlich ein
konstanter Wirmestrom an der Bodenfliche aufgebracht wird. Die geltenden Gleichungen werden mit Hilfe
der Eigenfunktionen der linearen Instabilitdt auf einen Satz von normalen Zufallsdifferentialgleichungen
zuriickgefiihrt, welcher mit Hilfe einer Monte-Carlo-Simulation gelost wird. Die Abhingigkeit des
Zeitpunktes des Einsetzens der Konvektion von der Rayleigh-Zahl und der Prandtl-Zahl wird untersucht. Die
numerischen Eegebnisse stimmen gut mit den verfiigbaren experimentellen Daten iiberein.

BO3HUKHOBEHME ECTECTBEHHON KOHBEKILIMM B CJIOE XHJAKOCTH B
YCJOBHUAX MTHOBEHHOI'O HATPEBA CHH3Y

AnHoTaums—PaccMaTpuBaeTCs BO3HHKHOBEHHE KOHBEKUHH B CJIO€ XHMAKOCTH, B KOTOPOM TeMOeparyp-
Hulil IpodHIL Pa3BHBAETCA BO BPEMEHH C Y4ETOM CIy4aiiHBIX (UIyKTyauMil, Koraa NOCTOSHHBIM TeILIo-
BLIM TOTOKOM BHE3alHO HAYHHAET pa3orpeBaTbc HHXKHAA MOBEPXHOCTh. [Ipu Hcrmosb3oBaHMM
Pa3NIoKEHHS 1O COBCTBEHHBIM QYHKLMAM B THHEHHOH 3a1a4e YCTORYHBOCTH ONPENENSIONUE YPABHEHHSA
CBOZATCA K CHCTEMe OOLIKHOBEHHBIX IH(PdEPEHIMAaNbHLIX YPaBHEHHi, KOTOPbIE PEIIAIOTCS METOAOM
Monrte-Kapio. Hccaenyercs 3aBHCHMOCTL BpPeMeHH BO3HMKHOBCHHS KOHBEKIMH OT uMcesn Pajes u
INMpauarng. Yucnenssle pe3yibTaThl XOPOLIO COINIACYFOTCA ¢ HMEIOIMMHUCH IKCNEPUMEHTATBHBIMA
IOaHHBIMA.

IMT 29:2-C



